解决方案需求
数字化转型正在成为社会发展的新常态,智能AI技术、大数据和5G网络新技术将推动社会各行各业迈入数字新基建的新时代,构建一套完美的解决方案方能扬帆领航。
了解更多了解更多

光模块知识总述-3

作者:容域科技 发布时间:2023-06-16
  1. XFP 模块
 
对外型号 中心
波长(nm)
传输
距离(m)
Date Rate
(Gb/s)
Fiber
Mode
光纤
直径(μm)
模式带宽(MHz'km) 接口指标(dBm)
输出光功率 接收灵敏度 受压灵敏度 光饱和度
GACX-8596-02 850 300 10.31 MMF 50/125 2000 -7.3~1.08 ≤-11.1 ≤-7.5 ≤-1
GACX-1396-10 1310 10k 10.31 SMF 9/125   -8.2~+0.5 ≤-12.6 ≤-10.3 ≤0.5
GACX-1596-40 1550 40k 9.95~10.7 -1.0~+2 ≤-14.1 ≤-11.3 ≤-1
 
XFP模块是一种可热插拔的、占电路板面积很小的、串行-串行光收发器,可以支持SONET OC‐192、10 Gbps 以太网、10 Gbps 光纤通道和G.709链路。

9GBIC光模块
 
对外型号 中心
波长
Fiber
Mode
光纤直径(μm) 传输
距离
接口指标(dBm)
输出光功率 接收灵敏度 光饱和度
GACG-8512-02 850nm MMF 50/125 550m -9.5~-3 ≤-17 ≤-3
MMF 62.5/125 275m
GACG-1312-10 1310nm SMF 9/125 10km -9.5~-3 ≤-19 ≤-3
GACG-1312-40 40km -4~+3 ≤-23 ≤-3
GACG-1512-60 1550nm 60km -2~+3 ≤-23 ≤-3
GACG-1512-80 80km 0~+3 ≤-24 ≤-3
GACG-1512-120 120km -2~+5 ≤-29 ≤-10
 
GBIC是Giga Bitrate Interface Converter的缩写,是将千兆位电信号转换为光信号的接口器件。GBIC设计上可以为热插拔使用,是一种符合国际标准的可互换产品。

10Xenpak光模块
型号 波长 距离 速率 接口 光纤 输出光功率 接受灵敏度 受压灵敏度 光饱和度
GACK-8596-02 850nm 300m  
10.31Gb/s
 
双SC
MMF -7.3~-1 ≤-11.1 ≤-7.5 ≤-1
GACK-1396-10 1310nm 10km  
SMF
-8.2~+0.5 ≤-12.6 ≤-10.3 ≤0.5
GACK-1596-40 1550nm 40km -4.7~+4   ≤-11.3 ≤-1
GACK-1596-80 1550nm 80km 0~-4 ≤-22↵   ≤-7
 
Xenpak光模块通过70pin的SFP连接器与电路板连接,其数据通道是XAUI接口;Xenpak支持所有IEEE 802.3ae定义的光接口,在线路端可以提供10.3 Gb/s、9.95 Gb/s或4×3.125 Gb/s的速率。

11Xpak和X2光模块
 
Xpak和X2光模块都是从Xenpak标准演进而来的,其内部功能模块与Xenpak基本相同,在电路板上的应用也相同,都是使用一个模块即可实现10G以太网光接口的功能。由于Xenpak光模块安装到电路板上时需要在电路板上开槽,实现较复杂,无法实现高密度应用。而Xpak和X2光模块经过改进后体积只有Xenpak的一半左右,可以直接放到电路板上,因此适用于高密度的机架系统和PCI网卡应用。

七、SFP光模块的选用

光模块的传输距离分为短距、中距和长距三种。模块型号标称的传输距离只作为一种分类方法,实际应用中不能直接套用。因为光信号在光纤中传输时会有一定的损耗和色散,无法达到标称的传输距离。
损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。
色散的产生主要是因为不同波长的电磁波在同一介质中传播时速度不等,从而造成光信号的不同波长成分由于传输距离的累积而在不同的时间到达接收端,导致脉冲展宽,进而无法分辨信号值。
因此,用户需要根据自己的实际组网情况选择合适的光模块,以满足不同的传输距离要求。实际传输距离取决于对应型号光模块的实际发射功率、光路上的传输衰减和光口的接收灵敏度。
发射光功率和接收灵敏度是影响传输距离的重要参数。
损耗限制可以根据公式来估算:
损耗受限距离=(发射光功率-接收灵敏度)/光纤衰减量
光纤衰减量和实际选用的光纤相关:
G.652光纤可以做到:
1310nm波段0.5dB/km
1550nm波段0.25dB/km
50um多模光纤:
850nm波段3.5dB/km
1310nm波段2dB/km。
对于长距光模块:平均输出光功率>饱和光功率
注意光纤使用长度,以保证到达光模块的实际接收光功率小于其光饱和度,否则有可能造成光模块的损坏。

注意:永远不要让光纤尾部正对你的眼睛,永远不要向光纤里面看,不要直接或使用仪器看光纤尾部。激光是不可见的,但可能会对人眼造成永久伤害。

八、光模块功能失效重要原因

光模块功能失效分为发射端失效和接收端失效,分析具体原因,最常出现的问题集中在以下几个方面:

1. 光口污染和损伤
由于光接口的污染和损伤引起光链路损耗变大,导致光链路不通。产生的原因有:
A. 光模块光口暴露在环境中,光口有灰尘进入而污染;
B. 使用的光纤连接器端面已经污染,光模块光口二次污染;
C. 带尾纤的光接头端面使用不当,端面划伤等;
D. 使用劣质的光纤连接器;

2. ESD损伤

ESD是ElectroStatic Discharge缩写即"静电放电",是一个上升时间可以小于1ns(10亿分之一秒)甚至几百ps(1ps=10000亿分之一秒)的非常快的过程,ESD可以产生几十Kv/m甚至更大的强电磁脉冲。静电会吸附灰尘,改变线路间的阻抗,影响产品的功能与寿命; ESD的瞬间电场或电流产生的热,使元件受伤,短期仍能工作但寿命受到影响;甚至破坏元件的绝缘或导体,使元件不能工作(完全破坏)。ESD是不可避免,除了提高电子元器件的抗ESD能力,重要的是正确使用,引起ESD损伤的因素有:
环境干燥,易产生ESD;
不正常的操作,如:非热插拔光模块带电操作;不做静电防护直接用手接触光模块静电敏感的管脚[t2];运输和存放过程中没有防静电包装;
设备没有接地或者接地不良;

九、光收发一体光模块应用注意点

1. 光口问题

光链路上各处的损耗衰减都关系到传输的性能,因此要求:
A. 选择符合入网标准的光纤连接器;
B. 光纤连接器要有封帽,不使用时盖上封帽,避免光纤连接器污染而二次污染光模块光口;封帽不使用时应放在防尘干净处保存;
C. 光纤连接器插入是水平对准光口,避免端面和套筒划伤;
D. 光模块光口避免长时间暴露,不使用时加盖光口塞;光口塞不使用时储存在防尘干净处;
E. 光纤连接器的端面保持清洁,避免划伤;

2. ESD 损伤

ESD是自然界不可避免的现象,预防ESD从防止电荷积聚和让电荷快速放电两方面着手:
A. 保持环境的湿度30~75%RH;
B. 对光模块操作时做静电防护工作(如:带静电环或将手通过预先接触机壳等手段释放静电),接触光模块壳体,避免接触光模块PIN 脚;
C. 使用的相关设备采用并联接地的公共接地点接地,保证接地路径最短,接地回路最小,不能串联接地,应避免采用外接电缆连接接地回路的设计方式;
D. 包装和周转的时候,采用防静电包装和防静电周转箱/车;
E. 禁止对非热插拔的设备,进行带电插拔的操作;
F. 避免用万用表表笔直接检测静电敏感的管脚;

十、简易光模块失效判断步骤
1. 测试光功率是否在指标要求范围之内,如果出现无光或者光功率小的现象。处理方法:
A. 检查光功率选择的波长和测量单位(dBm)
B. 清洁光纤连接器端面,光模块光口。
C. 检查光纤连接器端面是否发黑和划伤,光纤连接器是否存在折断,更换光纤连接器做互换性试验
D. 检查光纤连接器是否存在小的弯折。
E. 热插拔光模块可以重新插拔测试。
F. 同一端口更换光模块或者同一光模块更换端口测试。
2. 光功率正常但是链路无法通,检查link灯。

十一、SFP光模块相关参考标准
INF-8074i:SFP MSA
SFF-8472:数字诊断接口协议
DWDM MSA SFP :密集波分复用模块标准
GR-468-CORE:光器件可靠性方面的通用标准
ITU-T G.651:多模光纤标准
ITU-T G.652:单模光纤标准
21CFR 1040.10 激光安全等级
YD/T1352-2005:千兆以太网行业标准

全部方案

数字新基建
等保云灾备